• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität IZNF
  • FAUZur zentralen FAU Website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
Friedrich-Alexander-Universität IZNF
Menu Menu schließen
  • Startseite
  • About IZNF
  • Institute
    • CENEM – Computational Microscopy Group
    • CENEM – Electronmicroscopy
    • CENEM – Nanocharacterization
    • CENEM – Nanomechanics
    • Chemistry of Thin Film Materials
    • Cluster of Excellence – Engineering of Advanced Materials
    • Data-based Materials Design
    • Institute for Multiscale Simulation
    • OICE – Optical Imaging Centre Erlangen
    • Organic Materials & Devices
    • Photonic Crystal Fibres
    • Physics Underlying Life Sciences
    • Self-Organization Processes
    Portal Institute
  • Publications
    • Publications 2024
    • Publications 2023
    • Publications 2022
    • Publications 2021
    • Publications 2020
    • Publications 2019
    Portal Publications
  • Research
  • Events
  • Internal
  1. Startseite
  2. Institute
  3. Data-based Materials Design

Data-based Materials Design

Bereichsnavigation: Institute
  • CENEM - Computational Microscopy Group
  • CENEM - Electron Microscopy
  • CENEM - Nanocharacterization
  • CENEM - Nanomechanics
  • Chemistry of Thin Film Materials
  • Cluster of Excellence – Engineering of Advanced Materials
  • Data-based Materials Design
  • Institute for Multiscale Simulation
  • OICE - Optical Imaging Centre Erlangen
  • Organic Materials & Devices
  • Photonic Crystal Fibres
  • Physics Underlying Life Sciences
  • Self-Organization Processes

Data-based Materials Design

Prof. Dr. Luca M. Ghiringhelli
Photo: Prof. Dr. Luca M. Ghiringhelli

Research Focus

The research of the Data-based-Materials-Design group orbits around the development and application of AI methods for the modeling, design, and discovery of materials. Methods span compressed sensing, symbolic regression, subgroup discovery, and deep learning, while applications cover catalysis, characterization of surfaces, and several mechanical and transport properties of nano- as well as macro-scaled materials. Focus is on methods that yield interpretable models and can cope with “small data” for training. The group participates in the NFDI FAIRmat consortium, in particular in coordinating the creation of metadata and ontologies for the Interoperability and Reusability of FAIR (materials-science) data.

 

Email: luca.ghiringhelli@fau.de

Website: https://www.matsim.tf.fau.de/person/luca-ghiringhelli/

 

Logo WW8

Logo FAIRmat

 

 

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Cauerstr. 3
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben